Two motor neuron synergies, invariant across ankle joint angles, activate the triceps surae during plantarflexion

Author:

Levine JacksonORCID,Avrillon SimonORCID,Farina DarioORCID,Hug FrançoisORCID,Pons José L.ORCID

Abstract

AbstractRecent studies have suggested that the central nervous system generates movements by controlling groups of motor neurons (synergies) that do not always align with muscle anatomy. In this study, we determined whether these synergies are robust across tasks with different mechanical constraints. We identified motor neuron synergies using principal component analysis (PCA) and cross-correlations between smoothed discharge rates of motor neurons. In Part 1, we used simulations to validate these methods. The results suggested that PCA can accurately identity the number of common inputs and classify motor neurons according to the synaptic weights of the common inputs they receive. Moreover, the results confirmed that cross-correlation can separate pairs of motor neurons that receive common inputs from those that do not receive common inputs. In Part 2, sixteen individuals performed plantarflexion at three ankle angles while recording high-density surface electromyography from the gastrocnemius lateralis (GL) and medialis (GM) and the soleus (SOL) muscles. We identified and tracked the same motor units across angles. PCA revealed two motor neuron synergies, primarily grouping motor neurons innervating GL-SOL and GM-SOL. These motor neuron synergies were relatively stable with 74.0% of motor neurons classified in the same synergy across angles. Cross-correlation demonstrated that only 13.9% of pairs of motor neurons maintained a non-significant level of correlation across angles, confirming the large presence of common inputs. Overall, these results highlighted the modularity of movement control at the motor neuron level, which may ensure a sensible reduction of computational resources for movement control.Significance statementThe central nervous system may generate movements by activating clusters of motor neurons with common inputs. In line with this hypothesis, we show here that two main sources of common inputs drive the motor neurons innervating the triceps surae muscles during ankle plantarflexions. For the first time, we report that the distribution of these common inputs is globally invariant despite changing the mechanical constraints of the tasks, i.e., the ankle angle. These results demonstrate the functional relevance of the modular organization of the central nervous system to control movements.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3