Abstract
AbstractWe use global sensitivity analysis (specifically, Partial Rank Correlation Coefficients) to explore the roles of ecological and epidemiological processes in shaping the temporal dynamics of a parameterized SIR-type model of two host species and an environmentally transmitted pathogen. We compute the sensitivities of disease prevalence in each host species to model parameters. Sensitivity rankings and subsequent biological interpretations are calculated and contrasted for cases were the pathogen is introduced into a disease-free community and where a second host species is introduced into an endemic single-host community. In some cases the magnitudes and dynamics of the sensitivities can be predicted only by knowing the host species characteristics (i.e., their competitive abilities and disease competence) whereas in other cases they can be predicted by factors independent of the species characteristics (specifically, intraspecific versus interspecific processes or the species’ roles of invader versus resident). For example, when a pathogen is initially introduced into a disease-free community, disease prevalence in both hosts is more sensitive to the burst size of the first host than the second host. In comparison, disease prevalence in each host is more sensitive to its own infection rate than the infection rate of the other host species. In total, this study illustrates that global sensitivity analysis can provide useful insight into how ecological and epidemiological processes shape disease dynamics and how those effects vary across time and system conditions. Our results show that sensitivity analysis can provide quantification and direction when exploring biological hypotheses.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献