Accurate identification of de novo genes in plant genomes using machine learning algorithms

Author:

Casola ClaudioORCID,Owoyemi Adekola,Pepper Alan E.ORCID,Ioerger Thomas R.

Abstract

AbstractDe novo gene birth—the evolution of new protein-coding genes from ancestrally noncoding DNA—is increasingly appreciated as an important source of genetic and phenotypic innovation. However, the frequency and overall biological impact of de novo genes (DNGs) remain controversial. Large-scale surveys of de novo genes are critical to address these issues, but DNG identification represents a persistent challenge due to the lack of standardized protocols and the laborious analyses traditionally used to detect DNGs. Here, we introduced novel approaches to identify de novo genes that rely on Machine Learning Algorithms (MLAs) and are poised to accelerate DNG discovery. We specifically investigated if MLAs developed in one species using known DNGs can accurately predict de novo genes in other genomes. To maximize the applicability of these methods across species, we relied only on DNA and protein sequence features that can be easily obtained from annotation data. Using hundreds of published and newly annotated DNGs from three angiosperms, we trained and tested both Decision Tree (DT) and Neural Network (NN) algorithms. Both MLAs showed high levels of accuracy and recall within-genomes. Although accuracies and recall decreased in cross-species analyses, they remained elevated between evolutionary closely related species. A few training features, including presence of a protein domain and coding probability, held most of the MLAs predictive power. In analyses of all genes from a genome, recall was still elevated. Although false positive rates were relatively high, MLA screenings of whole-genome datasets reduced by up to ten-fold the number of genes to be examined by conventional comparative genomic methods. Thus, a combination of MLAs and traditional strategies can significantly accelerate the accurate discovery of DNG and the annotation in angiosperm genomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3