A meiotic midbody structure in mouse oocytes acts as a barrier for nascent translation to ensure developmental competence

Author:

Jung Gyu Ik,Londoño-Vásquez Daniela,Park Sungjin,Skop Ahna R.ORCID,Balboula Ahmed Z.ORCID,Schindler KarenORCID

Abstract

AbstractSuccessful embryo development is dependent upon maternally deposited components. During egg formation, developmental competence is acquired through regulated translation of maternal mRNA stores. In addition, egg precursors undergo two rounds of chromosome segregation, each coupled to an asymmetric cytokinesis that produces two non-functional polar bodies. In somatic cells, cytokinesis produces two daughter cells and one midbody remnant (MBR), a signaling organelle assembled from the midbody (MB), which first appears in Telophase. MBs contain transcription and translation factors, and epigenetic modifiers. Once MBs mature to MBRs by abscission, they can be subsequently phagocytosed by another cell and influence cellular function or fate. Although the significance of MBs is elucidated in several cell types like neurons, cancer cells and stem cells, the presence and function of MBs in gametes and their roles in reproductive fitness are unknown. Here, we examined the formation and regulation of meiotic midbodies (mMB) in mouse oocytes. We find that although mouse oocyte mMBs contain analogous structures to somatic MBs, they also have a unique cap-like structure composed of the centralspindlin complex, and that cap formation depends upon an asymmetric microtubule abundance in the egg compared to the polar body. Furthermore, our results show that mMBs are translationally active ribonucleoprotein granules, supported by detection of ribosomes, polyadenylated mRNAs and nascent translation. Finally, by pharmacological and laser ablation-based approaches, we demonstrate that the mMB cap is a barrier to prevent translated products from leaving the egg and escaping into the polar body. Crucially, this barrier is critical for successful early embryonic development. Here, we document an evolutionary adaptation to the highly conserved process of cytokinesis in mouse oocytes and describe a new structure and new mechanism by which egg quality and embryonic developmental competence are regulated.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3