Abstract
AbstractSimultaneous EEG-fMRI is a powerful multimodal technique for imaging the brain, but its use in neurofeedback experiments has been limited by EEG noise caused by the MRI environment. Neurofeedback studies typically require analysis of EEG in real time, but EEG acquired inside the scanner is heavily contaminated with ballistocardiogram (BCG) artifact, a high-amplitude artifact locked to the cardiac cycle. Although techniques for removing BCG artifacts do exist, they are either not suited to real-time, low-latency applications, such as neurofeedback, or have limited efficacy. We propose and validate a new open-source BCG removal software called EEG-LLAMAS (Low Latency Artifact Mitigation Acquisition Software), which adapts and advances existing artifact removal techniques for low-latency experiments. We first used simulations to validate LLAMAS in data with known ground truth. We found that LLAMAS performed better than the best publicly-available real-time BCG removal technique, optimal basis sets (OBS), in terms of its ability to recover EEG waveforms, power spectra, and slow wave phase. To determine whether LLAMAS would be effective in practice, we then used it to conduct real-time EEG-fMRI recordings in healthy adults, using a steady state visual evoked potential (SSVEP) task. We found that LLAMAS was able to recover the SSVEP in real time, and recovered the power spectra collected outside the scanner better than OBS. We also measured the latency of LLAMAS during live recordings, and found that it introduced a lag of less than 50ms on average. The low latency of LLAMAS, coupled with its improved artifact reduction, can thus be effectively used for EEG-fMRI neurofeedback. This platform enables closed-loop experiments which previously would have been prohibitively difficult, such as those that target short-duration EEG events, and is shared openly with the neuroscience community.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献