A systematically optimized awake mouse fMRI paradigm

Author:

Xu Wenjing,Pei Mengchao,Zhang Kaiwei,Tong Chuanjun,Bo Binshi,Feng Jianfeng,Zhang Xiao-YongORCID,Liang Zhifeng

Abstract

AbstractFunctional magnetic resonance imaging (fMRI) has been increasingly utilized in mice. Due to the non-negligible effects of anesthetics on mouse fMRI, it is becoming more common to perform fMRI in the awake mice. However, high stress level and head motion in awake mouse fMRI remain to be fully addressed, which limits its practical applications. Therefore, here we presented a systematically optimized awake mouse fMRI paradigm as a practical and open-source solution. First, we designed a soundproof habituation chamber in which multiple mice can be habituated simultaneously and independently. Then, combining corticosterone, body weight and behavioral measurements, we systematically evaluated the potential factors that may contribute to animals’ stress level for awake imaging. Among many factors, we found that the restraining setup allowing forelimbs freely moving and head tilted at 30-degree was optimal for minimizing stress level. Importantly, we implemented multiband simultaneous multi-slice imaging to enable ultrafast fMRI acquisition in awake mice. Compared to conventional single-band EPI, faster acquisition enabled by multiband imaging were more robust to head motion and yielded higher statistical power. Thus, more robust resting-state functional connectivity was detected using multiband acquisition in awake mouse fMRI, compared to conventional single-band acquisition. In conclusion, we presented an awake mouse fMRI paradigm that is highly optimized in both awake mice habituation and fMRI acquisition, and such paradigm minimized animals’ stress level and provided more resistance to head motion and higher statistical power.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3