Glycerolipid defects in skeletal muscle contribute to rhabdomyolysis in Tango2 deficiency

Author:

Casey Jennifer G,Kim Euri S,Tao Brian S,Mansur Arian,Wallace E. Diane,Gupta Vandana A

Abstract

AbstractRhabdomyolysis is a clinical emergency characterized by severe muscle damage resulting in the release of intracellular muscle components leading to myoglobinuria and in severe cases, acute kidney failure. Rhabdomyolysis is caused by genetic factors that are linked to increased disease susceptibility in response to extrinsic triggers. Recessive mutations inTANGO2result in episodic rhabdomyolysis, metabolic crises, encephalopathy and cardiac arrhythmia, the underlying mechanism contributing to disease onset in response to specific triggers remains unclear. To address these challenges, we created a zebrafish model of Tango2 deficiency. Here we show that loss of Tango2 in zebrafish results in growth defects, early lethality and increased susceptibility of muscle defects similar toTANGO2patients. Detailed analyses of skeletal muscle revealed defects in the sarcoplasmic reticulum and mitochondria at the onset of disease development. The sarcoplasmic reticulum (SR) constitutes the primary lipid biosynthesis site and regulates calcium handling in skeletal muscle to control excitation-contraction coupling. Tango2 deficient SR exhibits increased sensitivity to calcium release that was partly restored by inhibition of Ryr1-mediated Ca2+release in skeletal muscle. Using lipidomics, we identified alterations in the glycerolipid state oftango2mutants which is critical for membrane stability and energy balance. Therefore, these studies provide insight into key disease processes in Tango2 deficiency and increased our understanding of how specific defects can predispose to environmental triggers in TANGO2-related disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3