1. Rosettaantibodydesign (rabd): A general framework for computational antibody design;PLoS computational biology,2018
2. Unified rational protein engineering with sequence-based deep representation learning;Nature methods,2019
3. Sharrol Bachas , Goran Rakocevic , David Spencer , Anand V. Sastry , Robel Haile , John M. Sutton , George Kasun , Andrew Stachyra , Jahir M. Gutierrez , Edriss Yassine , Borka Medjo , Vincent Blay , Christa Kohnert , Jennifer T. Stanton , Alexander Brown , Nebojsa Tijanic , Cailen McCloskey , Rebecca Viazzo , Rebecca Consbruck , Hayley Carter , Simon Levine , Shaheed Abdulhaqq , Jacob Shaul , Abigail B. Ventura , Randal S. Olson , Engin Yapici , Joshua Meier , Sean McClain , Matthew Weinstock , Gregory Hannum , Ariel Schwartz , Miles Gander , and Roberto Spreafico . Antibody optimization enabled by artificial intelligence predictions of binding affinity and naturalness. bioRxiv, 2022.
4. Yue Cao , Payel Das , Vijil Chenthamarakshan , Pin-Yu Chen , Igor Melnyk , and Yang Shen . Fold2seq: A joint sequence (1d)-fold (3d) embedding-based generative model for protein design. In International Conference on Machine Learning, pp. 1261–1271. PMLR, 2021.