Improved Modeling of Droplet Motion in Open-Format Digital Microfluidic Devices

Author:

Singh KaranpartapORCID,Hawkins Benjamin G.ORCID

Abstract

Electrowetting is an electrokinetic effect whereby an applied electric field induces changes in the measured contact angle at a fluid-surface contact line. On hydrophobic, dielectric electrode surfaces, this effect generates droplet motion termed “electrowetting on dielectric” or EWOD. Applications of this phenomenon range from lab-on-a-chip to liquid lenses capable of altering their topology and focus within milliseconds. Electrowetting or EWOD theoretical models quantifying this effect fall into two paradigms: the Young-Lippman and the electromechanical theories. In this work, both paradigms were simulated to predict the velocity of a water droplet moving over an array of electrodes. Results were compared to experimental observations of measured velocities for two dielectric films: ETFE and household cling film. Theoretical model parameters, namely the length scale of the Maxwell force on the droplet, were also determined to align simulation and experiment. The results reveal the trend of droplet velocity in relation to applied voltage, and recapitulate the relationship between the two models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3