ADeS: a deep learning based Apoptosis Detection System for live cell imaging

Author:

Pulfer Alain,Pizzagalli Diego Ulisse,Gagliardi Paolo Armando,Hinderling Lucien,Lopez Paul,Zayats Romaniya,Carrillo-Barberà Pau,Antonello Paola,Palomino-Segura Miguel,Giusti Alessandro,Thelen Marcus,Gambardella Luca Maria,Murooka Thomas T.,Pertz Olivier,Krause Rolf,Gonzalez Santiago Fernandez

Abstract

AbstractLive-cell imaging allows the study of apoptosis at cellular level, highlighting morphological hallmarks such as nuclear shrinkage, membrane blebbing, and cell disruption. Identifying the exact location and timing of this process is essential to foster the understanding of its spatial-temporal regulation. However, the analysis of live-cell imaging datasets is complex, whereas computational tools tailored to this task are yet scarce. Therefore, we developed ADeS, an Apoptosis Detection System based on deep learning and activity recognition. ADeS uses morpho-dynamic hallmarks to detect the exact location and timing of apoptotic events in different cell types, reaching an accuracy above 97% in the classification of our validation datasets acquiredin vitroandin vivo. Moreover, ADeS is the first successful implementation of a deep learning network for the automatic detection of apoptotic cells in full microscopy movies in an end-to-end fashion, outperforming human in the same task. As a case study, we employed ADeS for the analysis of cell survivalin vitro, and for tissue damage assessmentin vivo, showing its potential application for toxicity assays, treatments evaluation and measuring of tissue dynamics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3