Reconstruction of Three-Dimensional Trajectories of Honeybees Flying in High-Density Aerial Environments

Author:

Mahadeeswara Mandiyam YadavORCID,Srinivasan Mandyam VORCID

Abstract

AbstractSo far, relatively few studies have investigated the flight of insects moving in experimental conditions approximating natural scenes. This is mainly because of the technical difficulties involved in detecting and tracking individual insects in three dimensions in outdoor scenarios, as well as matching views of corresponding insects in stereo images for trajectory reconstruction (the so-called ‘Correspondence Problem’). In this study, we describe the methods we have developed to track and unambiguously reconstruct the trajectories and body orientations of a large number of bees flying in close proximity in a ‘bee cloud’, using just two high-speed video cameras configured as a stereo pair in a semi-outdoor setting. Using these methods, two separate bee clouds were filmed and the data were analysed to reconstruct the three-dimensional trajectories, including the head and tail positions, of a total of 382 bees. This dataset should enable future analysis of the movement characteristics of bees flying in a dense environment, as well as uncover potential strategies for mid-air collision avoidance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3