Abstract
SummaryAs basic units of neural networks, ensembles of synapses underlie cognitive functions like learning and memory. These synaptic engrams show elevated synaptic density among engram cells following contextual fear memory formation. Subsequent analysis of the CA3-CA1 engram synapse revealed larger spine sizes, as the synaptic connectivity correlated to the memory strength. Here, we elucidate the synapse dynamics between CA3 and CA1 by tracking identical synapses at multiple time points by adapting two-photon microscopy and dual-eGRASP techniquein vivo. After memory formation, synaptic connections between engram populations are enhanced in conjunction with synaptogenesis within the hippocampal network. However, extinction learning specifically correlated with the disappearance of CA3 engram to CA1 engram (E-E) synapses. We observed “newly formed” synapses near pre-existing synapses, which clustered CA3-CA1 engram synapses after fear memory formation. Overall, we conclude that dynamics at CA3 to CA1 E-E synapses are key sites for modification during fear memory states.HighlightsWe adapted four-color two-photon microscopy with dual-eGRASP for a longitudinal observation of synaptic connections between CA3 and CA1.Synaptogenesis according to fear memory formation was specifically observed in E-E synapses.Extinction learning significantly correlated with the disappearance of E-E synapses.Particular distribution pattern of newly formed E-E synapses was observed after memory formation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献