Rational strain design with minimal phenotype perturbation

Author:

Narayanan Bharath,Weilandt DanielORCID,Masid MariaORCID,Miskovic LjubisaORCID,Hatzimanikatis VassilyORCID

Abstract

AbstractIncreased availability of multi-omics data has facilitated the characterization of metabolic phenotypes of cellular organisms. However, devising genetic interventions that drive cellular organisms toward the desired phenotype remains challenging in terms of time, cost, and resources. Kinetic models, in particular, hold great potential for accelerating this task since they can simulate the metabolic responses to environmental and genetic perturbations. Although the challenges in building kinetic models have been well-documented, there exists no consensus on how to use these models for strain design in a computationally tractable manner. A straightforward approach that exhaustively simulates and evaluates putative designs would be impractical, considering the intensive computational requirements when targeting multiple enzymes. We address this issue by introducing a framework to efficiently scout the space of designs while respecting the physiological requirements of the cell. The framework employs mixed-integer linear programming and nonlinear simulations with large-scale nonlinear kinetic models to devise genetic interventions in a scalable manner while accounting for the network effects of these perturbations. More importantly, the framework ensures the engineered strain’s robustness by maintaining its phenotype close to that of the reference strain. We use the framework to improve the production of anthranilate, a precursor for pharmaceutical drugs, inE. coli. The devised strategies include eight previously experimentally validated targets and also novel designs suitable for experimental implementation. As an essential part of the future design-build-test-learn cycles, we anticipate that this novel framework will enable high throughput designs and accelerated turnover in biotechnological processes.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3