Integrated multi-omics reveals minor spliceosome inhibition causes molecular stalling and developmental delay of the mouse forelimb

Author:

Drake Kyle D.ORCID,Springer Saren M.,Afriyie Kevon O.,Lopes Tomas D.,Girardini Kaitlin N.,Kanadia Rahul N.ORCID

Abstract

SummaryDevelopmental insults causing limb progenitor cell cycle defects or death tend to produce micromelic limbs with maintained segmentation. This suggests that the developing limb is plastic yet has a bias towards proximo-distal patterning. Here we use a minor spliceosome-deficient (U11-null) mouse forelimb, which has severe micromelia yet maintains proximo-distal segmentation, to decipher the mechanism(s) underlying this form of developmental robustness. We show that U11 loss triggers transcriptomic stalling upon spatially heterogenous mis-splicing of minor intron-containing genes. Through spatial transcriptomics, we detected a failure of the U11-null forelimb to separate its distal patterning program from its proximal differentiation program, which was supported by single-cell RNAseq-determined developmental delay of U11-null chondroprogenitors. Ultimately, these molecular and cellular deficits culminated in perturbed chondrogenesis, myogenesis, and axonogenesis. Taken together, we suggest that, upon sensing depletion of progenitors, the limb halts its transcriptional networks to pause its cellular trajectory, affording time to restructure its developmental program.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3