The N-terminal domain of the human mitochondrial helicase Twinkle has DNA binding activity crucial for supporting processive DNA synthesis by Polymerase γ

Author:

Johnson Laura C.,Singh Anupam,Patel Smita S.ORCID

Abstract

ABSTRACTTwinkle is the ring-shaped replicative helicase within the human mitochondria with high homology to bacteriophage T7 gp4 helicase-primase. Unlike many orthologs of Twinkle, the N-terminal domain (NTD) of human Twinkle has lost its primase activity through evolutionarily acquired mutations. The NTD has demonstrated no observed activity thus far, hence its role has remained unclear. In this study, we have biochemically characterized the isolated NTD and C-terminal domain with linker (CTD) to decipher their contributions to the activities of the full-length (FL) Twinkle. This novel CTD construct hydrolyzes ATP, has weak DNA unwinding activity, and assists Polγ-catalyzed strand-displacement synthesis on short replication forks. However, CTD fails to promote multi-kilobase length product formation by Polγ in rolling-circle DNA synthesis. Thus, CTD retains all the motor functions but struggles to implement them for processive translocation. We show that NTD has DNA binding activity, and its presence stabilizes Twinkle oligomerization. The CTD oligomerizes on its own, but loss of NTD results in heterogeneously-sized oligomeric species. The CTD also exhibits weaker and salt-sensitive DNA binding compared to FL Twinkle. Based on these results, we propose that NTD directly contributes to DNA binding and holds the DNA in place behind the central channel of the CTD like a ‘doorstop’, preventing helicase slippages and sustaining processive unwinding. Consistent with this model, mtSSB compensate for the NTD loss and partially restore kilobase length DNA synthesis by CTD and Polγ. The implications of our studies are foundational for understanding the mechanisms of disease-causing Twinkle mutants that lie in the NTD.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3