Regenerative Agriculture Augments Bacterial Community Structure for a Healthier Soil and Agriculture

Author:

Singh IndiraORCID,Hussain Meeran,G Manjunath,Chandra NagasumaORCID,G Ravikanth

Abstract

AbstractUse of chemical fertilization and pesticides not only harm the environment but also have detrimental consequences on human health. In recent years, there has been a major emphasis worldwide on natural agriculture methods. Regenerative agriculture is known across the world as a combination of nature-friendly farming practices such as no-till, cover cropping, crop-rotation, agro-forestry and use of organic home-based/farm-based ingredients to revive soil health. In India, a number of farmers are slowly adopting these practices using home-based mixtures and farmyard manure for soil rejuvenation and pest management. In order to evaluate the efficacy of the regenerative agriculture practices, this study compared conventional and regenerative agriculture plots for their soil bacterial and nutrient profiles. Two crops - ragi and vegetable (tomato/beans), and different lengths (≤3 and >5 years) of regenerative practices were additional metrics considered to understand variabilities due to crop-type and period of application. We found that all regenerative practices were effective in bringing about an enrichment for soil bacteria with a more heterogeneous composition. Additionally, the regenerative vegetable (RV) plots had an enhanced representation ofActinobacteriota, Chloroflexi, CyanobacteriaandPatescibacteriain comparison to conventional vegetable (CV) plots and Barren land (BL). Similarly, the regenerative ragi (RR) plots saw higher representation ofFirmicutesandActinobacteriotain comparison to conventional ragi (CR) plots and BL. The RV plots were also found to be enriched for Plant Growth Promoting Rhizobacteria (PGPRs) -Pseudomonas sp., and RR plots were enriched forBacillus sp., andMesorhizobium sp., which are known to play significant roles in vegetable and ragi growth respectively. Interestingly, long-term regenerative agriculture was able to support good nutrient composition while enhancing Soil Organic Carbon (SOC) levels. In all, the regenerative agriculture practices were found to be effective in improving bacterial community structure and simultaneously improving soil health. We found that BL soil with eucalyptus plantation showed least bacterial diversity suggesting detrimental impact on soil health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3