GlioMod: Spatiotemporal-Aware Glioblastoma Multiforme Tumor Growth Modeling with Deep Encoder-Decoder Networks

Author:

Jain Rishab K.ORCID,Gupta Abhinav,Ali Wael H.,Lermusiaux Pierre F. J.

Abstract

AbstractGlioblastoma multiforme is an aggressive brain tumor with the lowest survival rate of any human cancer due to its invasive growth dynamics. These dynamics result in recurrent tumor pockets hidden from medical imaging, which standard radio-treatment and surgical margins fail to cover. Mathematical modeling of tumor growth via partial differential equations (PDE) is well-known; however, it remains unincorporated in clinical practice due to prolonged run-times, inter-patient anatomical variation, and initial conditions that ignore a patient’s current tumor. This study proposes a glioblastoma multiforme tumor evolution model, GlioMod, that aims to learn spatiotemporal features of tumor concentration and brain geometry for personalized therapeutic planning. A dataset of 6,000 synthetic tumors is generated from real patient anatomies using PDE-based modeling. Our model employs image-to-image regression using a novel encoder-decoder architecture to predict tumor concentration at future states. GlioMod is tested in its simulation of forward tumor growth and reconstruction of patient anatomy on 900 pairs of unseen brain geometries against their corresponding PDE-solved future tumor concentrations. We demonstrate that spatiotemporal context achieved via neural modeling yields tumor evolution predictions personalized to patients and still generalizable to unseen anatomies. Its performance is measured in three areas: (1) regression error rates, (2) quantitative and qualitative tissue agreement, and (3) run-time compared to state-of-the-art numerical solvers. The results demonstrate that GlioMod can predict tumor growth with high accuracy, being 2 orders of magnitude faster and therefore suitable for clinical use. GlioMod is provided as an open-source software package, which includes the synthetic tumor data generated from the patients in our study.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3