Demultiplexing the heterogeneous conformational ensembles of intrinsically disordered proteins into structurally similar clusters

Author:

Appadurai Rajeswari,Koneru Jaya Krishna,Bonomi Massimiliano,Robustelli Paul,Srivastava Anand

Abstract

AbstractIntrinsically disordered proteins (IDPs) populate a range of conformations that are best described by a heterogeneous ensemble. Grouping an IDP ensemble into “structurally similar” clusters for visualization, interpretation, and analysis purposes is a much-desired but formidable task as the conformational space of IDPs is inherently high-dimensional and reduction techniques often result in ambiguous classifications. Here, we employ the t-distributed stochastic neighbor embedding (t-SNE) technique to generate homogeneous clusters of IDP conformations from the full heterogeneous ensemble. We illustrate the utility of t-SNE by clustering conformations of two disordered proteins, Aβ42, and a C-terminal fragment ofα-synuclein, in their APO states and when bound to small molecule ligands. Our results shed light on ordered sub-states within disordered ensembles and provide structural and mechanistic insights into binding modes that confer specificity and affinity in IDP ligand binding. t-SNE projections preserve the local neighborhood information and provide interpretable visualizations of the conformational heterogeneity within each ensemble and enable the quantification of cluster populations and their relative shifts upon ligand binding. Our approach provides a new framework for detailed investigations of the thermodynamics and kinetics of IDP ligand binding and will aid rational drug design for IDPs.SignificanceGrouping heterogeneous conformations of IDPs into “structurally similar” clusters facilitates a clearer understanding of the properties of IDP conformational ensembles and provides insights into ”structural ensemble: function” relationships. In this work, we provide a unique approach for clustering IDP ensembles efficiently using a non-linear dimensionality reduction method, t-distributed stochastic neighbor embedding (t-SNE), to create clusters with structurally similar IDP conformations. We show how this can be used for meaningful biophysical analyses such as understanding the binding mechanisms of IDPs such asα-synuclein and Amyloidβ42 with small drug molecules.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3