Model-driven optimal experimental design for calibrating cardiac electrophysiology models

Author:

Lei Chon LokORCID,Clerx MichaelORCID,Gavaghan David J.ORCID,Mirams Gary R.ORCID

Abstract

AbstractModels of the cardiomyocyte action potential (AP) have contributed immensely to the understanding of heart function, pathophysiology, and the origin of heart rhythm disturbances. However, AP models are nonlinear, complex, and can contain more than a hundred differential equations, making them difficult to parameterise. Therefore, cellular cardiac models have been limited to describing ‘average cell’ dynamics, when cell-specific models would be ideal to uncover inter-cell variability but are too experimentally challenging to be achieved. Here, we focus on automatically designing experimental protocols that allow us to better identify cell-specific maximum conductance values for each major current type—optimal experimental designs—for both voltage-clamp and current-clamp experiments. We show that optimal designs are able to perform better than many of the existing experiment designs in the literature in terms of identifying model parameters and hence model predictive power. For cardiac cellular electrophysiology, this approach will allow researchers to define their hypothesis of the dynamics of the system and automatically design experimental protocols that will result in theoretically optimal designs.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3