Crosslinkers both drive and brake cytoskeletal remodeling and furrowing in cytokinesis

Author:

Descovich Carlos PatinoORCID,Cortes Daniel B.,Ryan Sean,Nash Jazmine,Zhang Li,Maddox Paul S.ORCID,Nedelec FrancoisORCID,Maddox Amy Shaub

Abstract

AbstractCytokinesis and other cell shape changes are driven by the actomyosin contractile cytoskeleton. The molecular rearrangements that bring about contractility in non-muscle cells are currently debated. Specifically, both filament sliding by myosin motors, as well as cytoskeletal crosslinking by myosins and non-motor crosslinkers, are thought to promote contractility. Here, we examined how the abundance of motor and non-motor crosslinkers controls the speed of cytokinetic furrowing. We built a minimal model to simulate the contractile dynamics of the C. elegans zygote cytokinetic ring. This model predicted that intermediate levels of non-motor crosslinkers would allow maximal contraction speed, which we found to be the case for the scaffold protein anillin, in vivo. Our model also demonstrated a non-linear relationship between the abundance of motor ensembles and contraction speed. In vivo, thorough depletion of non-muscle myosin II delayed furrow initiation, slowed F-actin alignment, and reduced maximum contraction speed, but partial depletion allowed faster-than-expected kinetics. Thus, both motor and non-motor crosslinkers promote cytokinetic ring closure when present at low levels, but act as a brake when present at higher levels. Together, our findings extend the growing appreciation for the roles of crosslinkers, but reveal that they not only drive but also brake cytoskeletal remodeling.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3