Opposing modulation of Cx26 gap junctions and hemichannels by CO2

Author:

Nijjar Sarbjit,Maddison DanielORCID,Meigh Louise,de Wolf Elizabeth,Rodgers ThomasORCID,Cann Martin,Dale NicholasORCID

Abstract

SummaryCx26 hemichannels open in response to moderate elevations of CO2 (PCO2 55 mmHg) via a carbamylation reaction that depends on residues K125 and R104. Here we investigate the action of CO2 on Cx26 gap junctions. Using a dye transfer assay, we found that an elevated PCO2 of 55 mmHg greatly delayed the permeation of a fluorescent glucose analogue (NBDG) between HeLa cells coupled by Cx26 gap junctions. However, the mutations K125R or R104A abolished this effect of CO2. Whole cell recordings demonstrated that elevated CO2 reduced the Cx26 gap junction conductance (median reduction 5.6 nS, 95% confidence interval, 3.2 to 11.9 nS) but had no effect on Cx26K125R or Cx31 gap junctions. CO2 can cause intracellular acidification, but using 30 mM propionate we found that acidification in the absence of a change in PCO2 caused a median reduction in the gap junction conductance of 5.3 nS (2.8 to 8.3 nS). This effect of propionate was unaffected by the K125R mutation (median reduction 7.7 nS, 4.1 to 11.0 nS). pH-dependent and CO2-dependent closure of the gap junction are thus mechanistically independent. Mutations of Cx26 associated with the Keratitis Ichthyosis Deafness syndrome (N14K, A40V and A88V) also abolished the CO2-dependent gap junction closure. Elastic network modelling suggests that the lowest entropy state when CO2 is bound, is the closed configuration for the gap junction but the open state for the hemichannel. The opposing actions of CO2 on Cx26 gap junctions and hemichannels thus depend on the same residues and presumed carbamylation reaction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3