Abstract
AbstractBackgroundGene transfer between bacterial species is an important mechanism for adaptation. For example, sets of genes that confer the ability to form nitrogen-fixing root nodules on host plants have frequently moved betweenRhizobiumspecies. It is not clear, though, whether such transfer is exceptional, or if frequent inter-species introgression is typical. To address this, we sequenced the genomes of 196 isolates of theRhizobium leguminosarumspecies complex obtained from root nodules of white clover (Trifolium repens).ResultsCore gene phylogeny placed the isolates into five distinct genospecies that show high intra-genospecies recombination rates and remarkably different demographic histories. Most gene phylogenies were largely concordant with the genospecies, indicating that recent gene transfer between genospecies was rare. In contrast, very similar symbiosis gene sequences were found in two or more genospecies, suggesting recent horizontal transfer. The replication and conjugative transfer genes of the plasmids carrying the symbiosis genes showed a similar pattern, implying that introgression occurred by conjugative plasmid transfer. The only other regions that showed strong phylogenetic discordance with the genospecies classification were two small chromosomal clusters, one neighbouring a conjugative transfer system. Phage-related sequences were observed in the genomes, but appeared to have very limited impact on introgression.ConclusionsIntrogression among these closely-related species has been very limited, confined to the symbiosis plasmids and a few chromosomal islands. Both introgress through conjugative transfer, but have been subject to different types of selective forces.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献