A quantitative narrative on movement, disease and patch exploitation in nesting agent groups

Author:

Getz Wayne M.ORCID,Salter RichardORCID,Tallam Krti

Abstract

AbstractAnimal relocation data has recently become considerably more ubiquitous, finely structured (collection frequencies measured in minutes) and co-variate rich (physiology of individuals, environmental and landscape information, and accelerometer data). To better understand the impacts of ecological interactions, individual movement and disease on global change ecology, including wildlife management and conservation, it is important to have simulators that will provide demographic, movement, and epidemiology null models against which to compare patterns observed in empirical systems. Such models may then be used to develop quantitative narratives that enhance our intuition and understanding of the relationship between population structure and generative processes: in essence, along with empirical and experimental narratives, quantitative narratives are used to advance ecological epistemology. Here we describe a simulator that accounts for the influence of consumer-resource interactions, existence of social groups anchored around a central location, territoriality, group-switching behavior, and disease dynamics on population size. We use this simulator to develop new and reinforce existing quantitative narratives and point out areas for future study.Author summaryThe health and viability of species are of considerable concern to all nature lovers. Population models are central to our efforts to assess the numerical and ecological status of species and threats posed by climate change. Models, however, are crude caricatures of complex ecological systems. So how do we construct reliable assessment models able to capture processes essential to predicating the impacts of global change on population viability without getting tied up in their vast complexities? We broach this question and demonstrate how models focusing at the level of the individual (i.e., agent-based models) are tools for developing robust, narratives to augment narratives arising purely from empirical data sources and experimental outcomes. We do this in the context of nesting social groups, foraging for food, while exhibiting territoriality and group-switching behavior; and, we evaluate the impact of disease on the viability of such populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3