Structural role of essential light chains in the apicomplexan glideosome

Author:

Pazicky SamuelORCID,Dhamotharan KarthikeyanORCID,Kaszuba Karol,Mertens HaydynORCID,Gilberger Tim,Svergun DmitriORCID,Kosinski JanORCID,Weininger UlrichORCID,Löw ChristianORCID

Abstract

AbstractApicomplexan parasites, such as Plasmodium falciparum and Toxoplasma gondii, traverse the host tissues and invade the host cells exhibiting a specific type of motility called gliding. The molecular mechanism of gliding lies in the actin-myosin motor localized to the intermembrane space between the plasma membrane and inner membrane complex (IMC) of the parasites. Myosin A (MyoA) is a part of the glideosome, a large multi-protein complex, which is anchored in the outer membrane of the IMC. MyoA is bound to the proximal essential light chain (ELC) and distal myosin light chain (MLC1), which further interact with the glideosome associated proteins GAP40, GAP45 and GAP50. Whereas structures of several individual glideosome components and small dimeric complexes have been solved, structural information concerning the interaction of larger glideosome subunits and their role in glideosome function still remains to be elucidated. Here, we present structures of a T. gondii trimeric glideosome sub complex composed of a myosin A light chain domain with bound MLC1 and TgELC1 or TgELC2. Regardless of the differences between the secondary structure content observed for free P. falciparum PfELC and T. gondii TgELC1 or TgELC2, the proteins interact with a conserved region of TgMyoA to form structurally conserved complexes. Upon interaction, the essential light chains undergo contraction and induce α-helical structure in the myosin A C-terminus, stiffening the myosin lever arm. The complex formation is further stabilized through binding of a single calcium ion to T. gondii ELCs. Our work provides an important step towards the structural understanding of the entire glideosome and uncovering the role of its members in parasite motility and invasion.Author summaryApicomplexans, such as Toxoplasma gondii or the malaria agent Plasmodium falciparum, are small unicellular parasites that cause serious diseases in humans and other animals. These parasites move and infect the host cells by a unique type of motility called gliding. Gliding is empowered by an actin-myosin molecular motor located at the periphery of the parasites. Myosin interacts with additional proteins such as essential light chains to form the glideosome, a large protein assembly that anchors myosin in the inner membrane complex. Unfortunately, our understanding of the glideosome is insufficient because we lack the necessary structural information. Here we describe the first structures of trimeric glideosome sub complexes of T. gondii myosin A bound to two different light chain combinations, which show that T. gondii and P. falciparum form structurally conserved complexes. With an additional calcium-free complex structure, we demonstrate that calcium binding does not change the formation of the complexes, although it provides them with substantial stability. With additional data, we propose that the role of the essential light chains is to enhance myosin performance by inducing secondary structure in the C-terminus of myosin A. Our work represents an important step in unveiling the gliding mechanism of apicomplexan parasites.

Publisher

Cold Spring Harbor Laboratory

Reference98 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3