The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation

Author:

Ben Abdelkhalek Hanaa,Beckers Anja,Schuster-Gossler Karin,Pavlova Maria N.,Burkhardt Hannelore,Lickert Heiko,Rossant Janet,Reinhardt Richard,Schalkwyk Leonard C.,Müller Ines,Herrmann Bernhard G.,Ceolin Marcelo,Rivera-Pomar Rolando,Gossler Achim

Abstract

The floating head (flh) gene in zebrafish encodes a homeodomain protein, which is essential for notochord formation along the entire body axis. flh orthologs, termed Not genes, have been isolated from chick and Xenopus, but no mammalian ortholog has yet been identified. Truncate (tc) is an autosomal recessive mutation in mouse that specifically disrupts the development of the caudal notochord. Here, we demonstrate that truncate arose by a mutation in the mouse Not gene. The truncate allele (Nottc) contains a point mutation in the homeobox of Not that changes a conserved Phenylalanine residue in helix 1 to a Cysteine (F20C), and significantly destabilizes the homeodomain. Reversion of F20C in one allele of homozygous tc embryonic stem (ES) cells is sufficient to restore normal notochord formation in completely ES cell-derived embryos. We have generated a targeted mutation of Not by replacing most of the Not coding sequence, including the homeobox with the eGFP gene. The phenotype of NoteGFP/eGFP, NoteGFP/tc, and Nottc/tc embryos is very similar but slightly more severe in NoteGFP/eGFP than in Nottc/tc embryos. This confirms allelism of truncate and Not, and indicates that tc is not a complete null allele. Not expression is abolished in Foxa2 and T mutant embryos, suggesting that Not acts downstream of both genes during notochord development. This is in contrast to zebrafish embryos, in which flh interacts with ntl (zebrafish T) in a regulatory loop and is essential for development of the entire notochord, and suggests that different genetic control circuits act in different vertebrate species during notochord formation.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3