Abstract
Abstract.An undesirable side effect of drugs are cardiac arrhythmias, in particular a condition called torsades de pointes. Current paradigms for drug safety evaluation are costly, lengthy, and conservative, and impede efficient drug development. Here we combine multiscale experiment and simulation, high-performance computing, and machine learning to create an easy-to-use risk assessment diagram to quickly and reliable stratify the pro-arrhythmic potential of new and existing drugs. We capitalize on recent developments in machine learning and integrate information across ten orders of magnitude in space and time to provide a holistic picture of the effects of drugs, either individually or in combination with other drugs. We show, both experimentally and computationally, that drug-induced arrhythmias are dominated by the interplay of two currents with opposing effects: the rapid delayed rectifier potassium current and the L-type calcium current. Using Gaussian process classification, we create a classifier that stratifies safe and arrhythmic domains for any combinations of these two currents. We demonstrate that our classifier correctly identifies the risk categories of 23 common drugs, exclusively on the basis of their concentrations at 50% current block. Our new risk assessment diagram explains under which conditions blocking the L-type calcium current can delay or even entirely suppress arrhythmogenic events. Using machine learning in drug safety evaluation can provide a more accurate and comprehensive mechanistic assessment of the pro-arrhythmic potential of new drugs. Our study shapes the way towards establishing science-based criteria to accelerate drug development, design safer drugs, and reduce heart rhythm disorders.
Publisher
Cold Spring Harbor Laboratory
Reference50 articles.
1. Big pharma’s cost-cutting challenger;Nature,2016
2. The price of innovation: new estimates of drug development costs
3. An evaluation of 30 clinical drugs against the comprehensive in vitro proarrhythmia assay (CiPA) proposed ion channel panel;Journal of Pharmacolological Toxicology Methods,2016
4. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development
5. Evolution of strategies to improve preclinical cardiac safety testing;Nature Reviews Drug Discovery,2016
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献