Modeling zero-inflated count data with glmmTMB

Author:

Brooks Mollie E.ORCID,Kristensen Kasper,van Benthem Koen J.,Magnusson Arni,Berg Casper W.,Nielsen Anders,Skaug Hans J.,Mächler Martin,Bolker Benjamin M.ORCID

Abstract

AbstractEcological phenomena are often measured in the form of count data. These data can be analyzed using generalized linear mixed models (GLMMs) when observations are correlated in ways that require random effects. However, count data are often zero-inflated, containing more zeros than would be expected from the standard error distributions used in GLMMs, e.g., parasite counts may be exactly zero for hosts with effective immune defenses but vary according to a negative binomial distribution for non-resistant hosts.We present a new R package, glmmTMB, that increases the range of models that can easily be fitted to count data using maximum likelihood estimation. The interface was developed to be familiar to users of the lme4 R package, a common tool for fitting GLMMs. To maximize speed and flexibility, estimation is done using Template Model Builder (TMB), utilizing automatic differentiation to estimate model gradients and the Laplace approximation for handling random effects. We demonstrate glmmTMB and compare it to other available methods using two ecological case studies.In general, glmmTMB is more flexible than other packages available for estimating zero-inflated models via maximum likelihood estimation and is faster than packages that use Markov chain Monte Carlo sampling for estimation; it is also more flexible for zero-inflated modelling than INLA, but speed comparisons vary with model and data structure. Our package can be used to fit GLMs and GLMMs with or without zero-inflation as well as hurdle models. By allowing ecologists to quickly estimate a wide variety of models using a single package, glmmTMB makes it easier to find appropriate models and test hypotheses to describe ecological processes.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3