Proteus: A Random Forest Classifier to Predict Disorder-to-Order Transitioning Binding Regions in Intrinsically Disordered Proteins

Author:

Basu Sankar,Söderquist Fredrik,Wallner Björn

Abstract

AbstractThe focus of the computational structural biology community has taken a dramatic shift over the past one-and-a-half decades from the classical protein structure prediction problem to the possible understanding of intrinsically disordered proteins (IDP) or proteins containing regions of disorder (IDPR). The current interest lies in the unraveling of a disorder-to-order transitioning code embedded in the amino acid sequences of IDPs / IDPRs. Disordered proteins are characterized by an enormous amount of structural plasticity which makes them promiscuous in binding to different partners, multi-functional in cellular activity and atypical in folding energy landscapes resembling partially folded molten globules. Also, their involvement in several deadly human diseases (e.g. cancer, cardiovascular and neurodegenerative diseases) makes them attractive drug targets, and important for a biochemical understanding of the disease(s). The study of the structural ensemble of IDPs is rather difficult, in particular for transient interactions. When bound to a structured partner, an IDPR adapts an ordered conformation in the complex. The residues that undergo this disorder-to-order transition are called protean residues, generally found in short contiguous stretches and the first step in understanding the modus operandi of an IDP / IDPR would be to predict these residues. There are a few available methods which predict these protean segments from their amino acid sequences; however, their performance reported in the literature leaves clear room for improvement. With this background, the current study presents 'Proteus', a random forest classifier that predicts the likelihood of a residue undergoing a disorder-to-order transition upon binding to a potential partner protein. The prediction is based on features that can be calculated using the amino acid sequence alone. Proteus compares favorably with existing methods predicting twice as many true positives as the second best method (55% vs. 27%) with a much higher precision on an independent data set. The current study also sheds some light on a possible 'disorder-to-order' transitioning consensus, untangled, yet embedded in the amino acid sequence of IDPs. Some guidelines have also been suggested for proceeding with a real-life structural modeling involving an IDPR using Proteus.Software Availabilityhttps://github.com/bjornwallner/proteus

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm

2. Dunker AK , Garner E , Guilliot S , Romero P , Albrecht K , Hart J , et al. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput Pac Symp Biocomput. 1998; 473–484.

3. Protein folding and the order/disorder paradox

4. Unusual biophysics of intrinsically disordered proteins

5. Conformational Entropy of Intrinsically Disordered Proteins from Amino Acid Triads

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3