A rigorous measure of genome-wide genetic shuffling that takes into account crossover positions and Mendel’s second law

Author:

Veller CarlORCID,Kleckner Nancy,Nowak Martin A.ORCID

Abstract

AbstractComparative studies in evolutionary genetics rely critically on evaluation of the total amount of genetic shuffling that occurs during gamete production. However, such studies have been ham-pered by the fact that there has been no direct measure of this quantity. Existing measures consider crossing over by simply counting the average number of crossovers per meiosis. This is qualitatively inadequate because the positions of crossovers along a chromosome are also critical: a crossover towards the middle of a chromosome causes more shuffling than a crossover towards the tip. More-over, traditional measures fail to consider shuffling from independent assortment of homologous chromosomes (Mendel’s second law). Here, we present a rigorous measure of genome-wide shuffling that does not suffer from these limitations. We define the parameter as the probability that the alleles at two randomly chosen loci will be shuffled in the production of a gamete. This measure can be decomposed into separate contributions from crossover number and position and from independent assortment. Intrinsic implications of this metric include the fact that is larger when crossovers are more evenly spaced, which suggests a novel selective advantage of crossover interference. Utilization of is enabled by powerful emergent methods for determining crossover positions, either cytologically or by DNA sequencing. Application of our analysis to such data from human male and female reveals that: (i) in humans is close to its maximum possible value of 1/2, (ii) this high level of shuffling is due almost entirely to independent assortment, whose contribution is ~30 times greater than that of crossovers.

Publisher

Cold Spring Harbor Laboratory

Reference161 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3