Mechanisms of motor-independent membrane remodeling driven by dynamic microtubules

Author:

Rodríguez-García Ruddi,Volkov Vladimir A.,Chen Chiung-Yi,Katrukha Eugene A.,Olieric Natacha,Aher Amol,Grigoriev Ilya,López Magdalena Preciado,Steinmetz Michel O.,Kapitein Lukas C.,Koenderink Gijsje,Dogterom Marileen,Akhmanova AnnaORCID

Abstract

AbstractMicrotubule-dependent organization of membranous organelles, such as the endoplasmic reticulum, occurs through motor-based pulling and by coupling microtubule dynamics to membrane remodeling. How highly transient protein-protein interactions occurring at growing microtubule tips can induce load-bearing processive motion is currently unclear. Here, we reconstituted membrane tubulation in a minimal system with giant unilamellar vesicles, dynamic microtubules, End-Binding (EB) proteins and a membrane-targeted protein that interacts with EBs and microtubules. We showed that these components are sufficient to drive membrane remodeling by three mechanisms: membrane tubulation by growing microtubule ends, motor-independent membrane sliding along microtubule shafts and pulling by shrinking microtubules. Experiments and modeling demonstrated that the first two mechanisms can be explained by adhesion-driven biased membrane spreading on microtubules. Force spectroscopy revealed that attachments to growing and shrinking microtubule ends can sustain forces of ∼0.5 and ∼5 pN, respectively. Rapidly exchanging molecules that connect membranes to dynamic microtubules can thus bear sufficient load to induce membrane deformation and motility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3