RNA polymerase organizes into distinct spatial clusters independent of ribosomal RNA transcription in E. coli

Author:

Weng Xiaoli,Bohrer Christopher H.,Bettridge Kelsey,Lagda Arvin Cesar,Cagliero Cedric,Jin Ding Jun,Xiao Jie

Abstract

AbstractRecent studies have shown that RNA polymerase (RNAP) is spatially organized into distinct clusters in E. coli and B. subtilis cells. Spatially organized molecular components in prokaryotic systems imply compartmentalization without the use of membranes, which may offer new insights into pertinent functions and regulations. However, the function of RNAP clusters and whether its formation is driven by active ribosomal RNA (rRNA) transcription remain elusive. In this work, we investigated the spatial organization of RNAP in E. coli cells using quantitative superresolution imaging. We observed that RNAP formed large, distinct clusters under a rich medium growth condition and preferentially located in the center of the nucleoid. Two-color superresolution colocalization imaging showed that under the rich medium growth condition, nearly all RNAP clusters were active in synthesizing rRNA, suggesting that rRNA synthesis may be spatially separated from mRNA synthesis that most likely occurs at the nucleoid periphery. Surprisingly, a large fraction of RNAP clusters persisted under conditions in which rRNA synthesis was reduced or abolished, or when only one out of the seven rRNA operons (rrn) remained. Furthermore, when gyrase activity was inhibited, we observed a similar rRNA synthesis level, but multiple dispersed, smaller rRNA and RNAP clusters occupying not only the center but also the periphery of the nucleoid, comparable to an expanded nucleoid. These results suggested that RNAP was organized into active transcription centers for rRNA synthesis under the rich medium growth condition; their presence and spatial organization, however, were independent of rRNA synthesis activity under the conditions used but were instead influenced by the structure and characteristics of the underlying nucleoid. Our work opens the door for further investigations of the function and molecular nature of RNAP clusters and points to a potentially new mechanism of transcription regulation by the spatial organization of individual molecular components.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex Diffusion in Bacteria;Advances in Experimental Medicine and Biology;2020

2. Spatial organization of the gene expression hardware in Pseudomonas putida;Environmental Microbiology;2019-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3