Increased PHGDH expression uncouples hair follicle cycle progression and promotes inappropriate melanin accumulation

Author:

Mattaini Katherine R.,Sullivan Mark R.,Lau Allison N.,Fiske Brian P.,Bronson Roderick T.,Vander Heiden Matthew G.

Abstract

SUMMARYCopy number gain of the PHGDH gene that encodes the first enzyme of the serine biosynthesis pathway is found in some human cancers, including a subset of melanomas. In order to study the effect of increased PHGDH expression in tissues in vivo, we generated mice harboring a PHGDHtetO allele that allows tissue-specific, doxycycline-inducible PHGDH expression. Tissues and cells derived from PHGDHtetO mice exhibit increased serine biosynthesis. Histological examination of skin tissue from PHGDHtetO mice reveals the presence of melanin granules in anagen II hair follicles, despite the fact that melanin synthesis is normally closely coupled to the hair follicle cycle and does not begin until later in the cycle. This phenotype occurs in the absence of any global change in hair follicle cycle timing. The inappropriate presence of melanin early in the hair follicle cycle following PHGDH expression is also accompanied by increased melanocyte abundance in anagen II skin. Together, these data support a model in which PHGDH expression affects melanocyte proliferation and/or differentiation and may provide insight into how PHGDH expression impacts normal melanocyte biology to promote melanoma.SIGNIFICANCEThe significance behind copy number gain of PHGDH in human cancers is unclear. In this study, we generate a mouse model that mimics PHGDH gene copy number gain and characterize its effect on normal tissues. Increased PHGDH expression yields a phenotype of aberrant melanin production, which indicates that PHGDH expression may play a role in normal melanocyte biology. This result may provide insight into why PHGDH copy number gain is observed in melanoma more frequently than in most other tumor types.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3