A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP.

Author:

Zinszner H,Albalat R,Ron D

Abstract

In human myxoid liposarcoma, a chromosomal rearrangement leads to fusion of the growth-arresting and DNA-damage-inducible transcription factor CHOP (GADD153) to a peptide fragment encoded by the TLS gene. We have found that wild-type TLS and a closely related sarcoma-associated protein, EWS, are both abundant nuclear proteins that associate in vivo with products of RNA polymerase II transcription. This association leads to the formation of a ternary complex with other heterogeneous RNA-binding proteins (hnRNPs), such as A1 and C1/C2. An NIH-3T3-based transformation assay was used to study the oncogenic role of the sarcoma-associated domain of these RNA-binding proteins. Transduction of the TLS-CHOP oncogene into cells by means of a retroviral expression vector leads to loss of contact inhibition, acquisition of the ability to grow as colonies in soft agar, and tumor formation in nude mice. Mutations that interfere with the function of the leucine zipper dimerization domain or the adjacent basic region of CHOP abolish transformation. The essential role of the TLS component was revealed by the inability of truncated forms to fully transform cells. Domain swap between TLS- and EWS-associated oncogenes demonstrated that the component contributed by the RNA-binding proteins are functionally interchangeable, whereas the transcription factor component specifies tumor phenotype. The sarcoma-associated component of TLS and EWS contribute a strong transcriptional activation domain to the fusion proteins; however, transforming activity cannot be fully substituted by fusion of CHOP to other strong trans-activators. The juxtaposition of a novel effector domain from sarcoma-associated RNA-binding proteins to the targeting domain of transcription factors such as CHOP leads to the creation of a potent oncogene.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3