VICTOR: Genome-based Phylogeny and Classification of Prokaryotic Viruses

Author:

Meier-Kolthof Jan P.ORCID,Göker MarkusORCID

Abstract

AbstractBacterial and archaeal viruses (“phages”) play an enormous role in global life cycles and have recently regained importance as therapeutic agents to fight serious infections by multi-resistant bacterial strains. Nevertheless, taxonomic classification of phages is up to now only insufficiently informed by genome sequencing. Despite thousands of publicly available phage genomes, it still needs to be investigated how this wealth of information can be used for the fast, universal and accurate classification of phages. The Genome BLAST Distance Phylogeny (GBDP) approach is a truly whole-genome method currently used forin silicoDNA: DNA hybridization and phylogenetic inference from prokaryotic genomes. Based on the principles of phylogenetic systematics, we here established GBDP for phage phylogeny and classification, using the common subset of genome-sequenced and officially classified phages. Trees inferred with the best GBDP variants showed only few deviations from the official phage classification, which were uniformly due to incorrectly annotated GenBank entries. Except for low resolution at the family level, the majority of taxa was well supported as monophyletic. Clustering genome sequences with distance thresholds optimized for the agreement with the classification turned out to be phylogenetically reasonable. Accordingly modifying genera and species is taxonomically optional but would yield more uniform sequence divergence as well as stronger branch support. Analysing an expanded data set containing > 4000 phage genomes from public databases allowed for extrapolating regarding the number, composition and host specificity of future phage taxa. The selected methods are implemented in an easy-to-use web service “VICTOR” freely available athttp://ggdc.dsmz.de/victor.php.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3