Engineered reciprocal chromosome translocations drive high threshold, reversible population replacement in Drosophila

Author:

Buchman Anna B.,Ivy Tobin,Marshall John M.,Akbari Omar S.,Hay Bruce A.

Abstract

AbstractReplacement of wild insect populations with transgene-bearing individuals unable to transmit disease or survive under specific environmental conditions provides self-perpetuating methods of disease prevention and population suppression, respectively. Gene drive mechanisms that require the gene drive element and linked cargo exceed a high threshold frequency to spread are attractive because they offer several points of control: they bring about local, but not global population replacement; and transgenes can be eliminated by reintroducing wildtypes into the population so as to drive the frequency of transgenes below the threshold required for drive. It has long been recognized that reciprocal chromosome translocations could, in principal, be used to bring about high threshold gene drive through a form of underdominance. However, translocations able to drive population replacement have not been reported, leaving it unclear if translocation-bearing strains fit enough to mediate gene drive can easily be generated. Here we use modeling to identify a range of conditions under which translocations should spread, and the equilibrium frequencies achieved, given specific introduction frequencies, fitness costs and migration rates. We also report the creation of engineered translocation-bearing strains of Drosophila melanogaster, generated through targeted chromosomal breakage and homologous recombination. By several measures translocation-bearing strains are fit, and drive high threshold, reversible population replacement in laboratory populations. These observations, together with the generality of the tools used to generate translocations, suggest that engineered translocations may be useful for controlled population replacement in many species.

Publisher

Cold Spring Harbor Laboratory

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3