Horizontal transfer and finalization of a reliable detection method for the olive fruit fly endosymbiont,CandidatusErwinia dacicolax

Author:

Bigiotti Gaia,Pastorelli Roberta,Guidi Roberto,Belcari Antonio,Sacchetti Patrizia

Abstract

AbstractBackgroundThe olive fly,Bactrocera oleae, is the most important insect pest in olive production, causing economic damage to olive crops worldwide. In addition to extensive research onB. oleaecontrol methods, scientists have devoted much effort in the last century to understanding olive fly endosymbiosis with a bacterium eventually identified asCandidatusErwinia dacicola. This bacterium plays a relevant role in olive fly fitness. It is vertically transmitted, and it benefits both larvae and adults in wild populations; however, the endosymbiont is not present in lab colonies, probably due to the antibiotics and preservatives required for the preparation of artificial diets. Endosymbiont transfer from wildB. oleaepopulations to laboratory-reared ones allows olive fly mass-rearing, thus producing more competitive flies for future Sterile Insect Technique (SIT) applications.ResultsWe tested the hypothesis thatCa.E. dacicola might be transmitted from wild, naturally symbiotic adults to laboratory-reared flies. Several trials have been performed with different contamination sources ofCa.E. dacicola, such as ripe olives and gelled water contaminated by wild flies, wax domes containing eggs laid by wild females, cages dirtied by faeces dropped by wild flies and matings between lab and wild adults. PCR-DGGE, performed with the primer set 63F-GC/518R, demonstrated that the transfer of the endosymbiont from wild flies to lab-reared ones occurred only in the case of cohabitation.ConclusionsCohabitation of symbiotic wild flies and non-symbiotic lab flies allows the transfer ofCa.E. dacicola through adults. Moreover, PCR-DGGE performed with the primer set 63F-GC/518R was shown to be a consistent method for screeningCa.E. dacicola, also showing the potential to distinguish between the two haplotypes (htA and htB). This study represents the first successful attempt at horizontal transfer ofCa.E. dacicola and the first step in acquiring a better understanding of the endosymbiont physiology and its relationship with the olive fly. Our research also represents a starting point for the development of a laboratory symbiotic olive fly colony, improving perspectives for future applications of the Sterile Insect Technique.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3