Author:
Zhou Jingtian,Ma Jianzhu,Chen Yusi,Cheng Chuankai,Bao Bokan,Peng Jian,Sejnowski Terrence,Dixon Jesse,Ecker Joseph
Abstract
3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real data as benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically associating domains (TADs) could be identified within single cells, and their consensus boundaries among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster facilitates visualization and comparison of single-cell 3D genomes.
Publisher
Cold Spring Harbor Laboratory