HiCluster: A Robust Single-Cell Hi-C Clustering Method Based on Convolution and Random Walk

Author:

Zhou Jingtian,Ma Jianzhu,Chen Yusi,Cheng Chuankai,Bao Bokan,Peng Jian,Sejnowski Terrence,Dixon Jesse,Ecker Joseph

Abstract

3D genome structure plays a pivotal role in gene regulation and cellular function. Single-cell analysis of genome architecture has been achieved using imaging and chromatin conformation capture methods such as Hi-C. To study variation in chromosome structure between different cell types, computational approaches are needed that can utilize sparse and heterogeneous single-cell Hi-C data. However, few methods exist that are able to accurately and efficiently cluster such data into constituent cell types. Here, we describe HiCluster, a single-cell clustering algorithm for Hi-C contact matrices that is based on imputations using linear convolution and random walk. Using both simulated and real data as benchmarks, HiCluster significantly improves clustering accuracy when applied to low coverage Hi-C datasets compared to existing methods. After imputation by HiCluster, structures similar to topologically associating domains (TADs) could be identified within single cells, and their consensus boundaries among cells were enriched at the TAD boundaries observed in bulk samples. In summary, HiCluster facilitates visualization and comparison of single-cell 3D genomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3