Sequence-tagged site (STS) content mapping of human chromosomes: theoretical considerations and early experiences.

Author:

Green E D,Green P

Abstract

The magnitude of the effort required to complete the human genome project will require constant refinements of the tools available for the large-scale study of DNA. Such improvements must include both the development of more powerful technologies and the reformulation of the theoretical strategies that account for the changing experimental capabilities. The two technological advances described here, PCR and YAC cloning, have rapidly become incorporated into the standard armamentarium of genome analysis and represent key examples of how technological developments continue to drive experimental strategies in molecular biology. Because of its high sensitivity, specificity, and potential for automation, PCR is transforming many aspects of DNA mapping. Similarly, by providing the means to isolate and study larger pieces of DNA, YAC cloning has made practical the achievement of megabase-level continuity in physical maps. Taken together, these two technologies can be envisioned as providing a powerful strategy for constructing physical maps of whole chromosomes. Undoubtedly, future technological developments will promote even more effective mapping strategies. Nonetheless, the theoretical projections and practical experience described here suggest that constructing YAC-based STS-content maps of whole human chromosomes is now possible. Random STSs can be efficiently generated and used to screen collections of YAC clones, and contiguous YAC coverage of regions exceeding 2 Mb can be readily obtained. While the predicted laboratory effort required for mapping whole human chromosomes remains daunting, it is clearly feasible.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Reference95 articles.

1. Green, E.D. and Waterston. R.H. 1991. The human genome project: Prospects and implications for clinical medicine. J. Am. Med. Assoc. (in press).

2. Cloning of Large Segments of Exogenous DNA into Yeast by Means of Artificial Chromosome Vectors

3. Hieter, P., C. Connelly, J. Shero, M.K. McCormick, S. Antonarakis, W. Pavan, and R. Reeves. 1990. Yeast artificial chromosomes: Promises kept and pending. In Genome analysis (ed. K.E. Davies and S.M. Tilghman), pp. 83–120, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

4. Yeast artificial chromosomes: tools for mapping and analysis of complex genomes

5. YAC cloning: Options and problems.;Genet. Anal. Tech. Applic.,1990

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3