Modified covariance beamformer for solving MEG inverse problem in the environment with correlated sources

Author:

Kuznetsova Aleksandra,Nurislamova Yulia,Ossadtchi AlexeiORCID

Abstract

AbstractMagnetoencephalography (MEG) is a neuroimaging method ideally suited for non-invasive studies of brain dynamics. MEG’s spatial resolution critically depends on the approach used to solve the ill-posed inverse problem in order to transform sensor signals into cortical activation maps. Over recent years non-globally optimized solutions based on the use of adaptive beamformers (BF) gained popularity.When operating in the environment with a small number of uncorrelated sources the BFs perform optimally and yield spatial super-resolution. However, the BFs are known to fail when dealing with correlated sources acting like poorly tuned spatial filters with low signal-to-noise ratio (SNR) of the output timeseries and often meaningless cortical maps of power distribution.This fact poses a serious limitation on the broader use of this promising technique especially since fundamental mechanisms of brain functioning, its inherent symmetry and task-based experimental paradigms result into a great deal of correlation in the activity of cortical sources. To cope with this problem, we developed a novel beamformer approach that preserves high spatial resolution in the environments with correlated sources.At the core of our method is a projection operation applied to the vectorized sensor-space covariance matrix. This projection does not remove the activity of the correlated sources from the sensor-space covariance matrix but rather selectively handles their contributions to the covariance matrix and creates a sufficiently accurate approximation of an ideal data covariance that could hypothetically be observed should these sources be uncorrelated. Since the projection operation is reciprocal to the PSIICOS method developed by us earlier (Ossadtchi et al. (2018)) we refer to the family of algorithms presented here as ReciPSIICOS.We asses the performance of the novel approach using realistically simulated MEG data and show its superior performance in comparison to the well established MNE and classical BF approaches. We have also applied our approach to the MEG datasets from the two experiments involving two different auditory tasks.The analysis of experimental MEG datasets showed that beamformers from ReciPSIICOS family, but not MNE and the classical BF, discovered the expected bilateral focal sources in the primary auditory cortex and detected motor cortex activity associated with the audio-motor task. Moreover, ReciPSIICOS beamformers yielded cortical activity estimates with amplitude an order of magnitude higher than that obtained with the classical BF, which indicates the severeness of the signal cancellation problem when applying classical beamformers to MEG signals generated by synchronous sources.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3