Author:
Vitt Ursula,Gietzen Darryl,Stevens Kristian,Wingrove Jim,Becha Shanya,Bulloch Sean,Burrill John,Chawla Narinder,Chien Jennifer,Crawford Matthew,Ison Craig,Kearney Liam,Kwong Mary,Park Joe,Policky Jennifer,Weiler Mark,White Renee,Xu Yuming,Daniels Sue,Jacob Howard,Jensen-Seaman Michael I.,Lazar Jozef,Stuve Laura,Schmidt Jeanette
Abstract
We aligned Incyte ESTs and publicly available sequences to the rat genome and analyzed rat chromosome 1q43-54, a region in which several quantitative trait loci (QTLs) have been identified, including renal disease, diabetes, hypertension, body weight, and encephalomyelitis. Within this region, which contains 255 Ensembl gene predictions, the aligned sequences clustered into 568 Incyte genes and gene fragments. Of the Incyte genes, 261 (46%) overlapped 184 (72%) of the Ensembl gene predictions, whereas 307 were unique to Incyte. The rat-to-human syntenic map displays rearrangement of this region on rat chr. 1 onto human chromosomes 9 and 10. The mapping of corresponding human disease phenotypes to either one of these chromosomes has allowed us to focus in on genes associated with disease phenotypes. As an example, we have used the syntenic information for the rat Rf-1 disease region and the orthologous human ESRD disease region to reduce the size of the original rat QTL to only 11.5 Mb. Using the syntenic information in combination with expression data from ESTs and microarrays, we have selected a set of 66 candidate disease genes for Rf-1. The combination of the results from these different analyses represents a powerful approach for narrowing the number of genes that could play a role in the development of complex diseases.
Publisher
Cold Spring Harbor Laboratory
Subject
Genetics (clinical),Genetics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献