Genome-wide selection scans integrated with association mapping reveal mechanisms of physiological adaptation across a salinity gradient in killifish

Author:

Brennan Reid S.,Healy Timothy M.,Bryant Heather J.,La Man Van,Schulte Patricia M.,Whitehead Andrew

Abstract

AbstractAdaptive divergence between marine and freshwater environments is important in generating phyletic diversity within fishes, but the genetic basis of adaptation to freshwater habitats remains poorly understood. Available approaches to detect adaptive loci include genome scans for selection, but these can be difficult to interpret because of incomplete knowledge of the connection between genotype and phenotype. In contrast, genome wide association studies (GWAS) are powerful tools for linking genotype to phenotype, but offer limited insight into the evolutionary forces shaping variation. Here, we combine GWAS and selection scans to identify loci important in the adaptation of complex physiological traits to freshwater environments. We focused on freshwater (FW)-native and brackish water (BW)-native populations of the Atlantic killifish (Fundulus heteroclitus) as well as a population that is a natural admixture of these two populations. We measured phenotypes for multiple physiological traits that differ between populations and that may contribute to adaptation across osmotic niches (salinity tolerance, hypoxia tolerance, metabolic rate, and body shape) and used a reduced representation approach for genome-wide genotyping. Our results show patterns of population divergence in physiological capabilities that are consistent with local adaptation. Selection scans between BW-native and FW-native populations identified genomic regions that presumably aect fitness between BW and FW environments, while GWAS revealed loci that contribute to variation for each physiological trait. There was substantial overlap in the genomic regions putatively under selection and loci associated with the measured physiological traits, suggesting that these phenotypes are important for adaptive divergence between BW and FW environments. Our analysis also implicates candidate genes likely involved in physiological capabilities, some of which validate a priori hypotheses. Together, these data provide insight into the mechanisms that enable diversification of fishes across osmotic boundaries.Author SummaryIdentifying the genes that underlie adaptation is important for understanding the evolutionary process, but this is technically challenging. We bring multiple lines of evidence to bear for identifying genes that underlie adaptive divergence. Specifically, we integrate genotype-phenotype association mapping with genome-wide scans for signatures of natural selection to reveal genes that underlie phenotypic variation and that are adaptive in populations of killifish that are diverging between marine and freshwater environments. Because adaptation is likely manifest in multiple physiological traits, we focus on hypoxia tolerance, salinity tolerance, and metabolic rate; traits that are divergent between marine and freshwater populations. We show that each of these phenotypes is evolving by natural selection between environments; genetic variants that contribute to variation in these physiological traits tend to be evolving by natural selection between marine and freshwater populations. Furthermore, one of our top candidate genes provides a mechanistic explanation for previous hypotheses that suggest the adaptive importance of cellular tight junctions. Together, these data demonstrate a powerful approach to identify genes involved in adaptation and help to reveal the mechanisms enabling transitions of fishes across osmotic boundaries.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish ( Fundulus heteroclitus );Comprehensive Physiology;2020-03-12

2. Tricellular tight junction-associated angulins in the gill epithelium of rainbow trout;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2018-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3