Microporous scaffolds drive assembly and maturation of progenitors into β-cell clusters

Author:

Youngblood Richard L.,Sampson Joshua P.,Lebioda Kimberly R.,Spicer Graham,Shea Lonnie D.

Abstract

AbstractHuman pluripotent stem cells (hPSCs) represent a promising cell source for the development of β-cells for use in therapies for type 1 diabetes. Current culture approaches provide the signals to drive differentiation towards β-cells, with the cells spontaneously assembling into clusters. Herein, we adapted the current culture systems to cells seeded on microporous biomaterials, with the hypothesis that the pores can guide the assembly into β-cell clusters of defined size that can enhance maturation. The microporous scaffold culture allows hPSC-derived pancreatic progenitors to form clusters at a consistent size as cells undergo differentiation to immature β-cells. By modulating the scaffold pore sizes, we observed 250-425 µm pore size scaffolds significantly enhance insulin expression and key β-cell maturation markers compared to suspension cultures. Furthermore, when compared to suspension cultures, the scaffold culture showed increased insulin secretion in response to glucose stimulus indicating the development of functional β-cells. In addition, scaffolds facilitated cell-cell interactions enabled by the scaffold design and cell-mediated matrix deposition of extracellular matrix (ECM) proteins associated with the basement membrane of islet cells. We further investigated the influence of ECM on cell development by incorporating an ECM matrix on the scaffold prior to cell seeding; however, their presence did not further enhance maturation. These results suggest the microporous scaffold culture facilitates 3D cluster formation, supports cell-cell interactions, and provides a matrix similar to a basement membrane to drive in vitro hPSC-derived β-cell maturation and demonstrates the feasibility of these scaffolds as a biomanufacturing platform.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3