Kinesin-2 from C. reinhardtii is an atypically fast and auto-inhibited motor that is activated by heterotrimerization for intraflagellar transport

Author:

Sonar Punam,Youyen Wiphu,Cleetus Augustine,Wisanpitayakorn Pattipong,Mousavi Iman S.,Stepp Willi L.,Hancock William O.,Tüzel Erkan,Ökten Zeynep

Abstract

SummaryThe construction and function of virtually all cilia require the universally conserved process of Intraflagellar Transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, up to ten kinesin-2 motors ‘line up’ in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other’s way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4], but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit in fully activating FLA8/10 for IFT in vivo. Finally, we link fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and the complexes both spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors prefer to work alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3