BigMPI4py: Python module for parallelization of Big Data objects

Author:

Ascension Alex M.ORCID,Araúzo-Bravo Marcos J.ORCID

Abstract

AbstractBig Data analysis is a discipline with a growing number of areas where huge amounts of data is extracted and analyzed. Parallelization in Python integrates Message Passing Interface via mpi4py module. Since mpi4py does not support parallelization of objects greater than 231 bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and also uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and HPC systems. We validated BigMPI4py on whole genome bisulfite sequencing (WGBS) DNA methylation ENCODE data of 59 samples from 27 human tissues. We categorized them on the three germ layers and developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. We observed a differentiation of the germ layers, and a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores. BigMPI4py is available at https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. S. Lohr , “The Origins of ‘Big Data’: An Etymological Detective Story,” https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/.

2. The World’s Technological Capacity to Store, Communicate, and Compute Information

3. B. Marr , “How Much Data Do We Create Every Day? The Mind-Blowing Stats Everyone Should Read,” https://bit.ly/2FyrOrD, May 2018.

4. A. M. Noor , L. Holmberg , C. Gillett , and A. Grigoriadis , “Big Data: the challenge for small researchgroups in the era of cancer genomics,” British Journal of Cancer, vol. 113, 2015.

5. P3BSseq: parallel processing pipeline software for automatic analysis of bisulfite sequencing data;Bioinformatics,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3