An overview of data-driven HADDOCK strategies in CAPRI rounds 38-45

Author:

Koukos P.I.ORCID,Roel-Touris J.ORCID,Ambrosetti F.,Geng C.ORCID,Schaarschmidt J.ORCID,Trellet M.E.ORCID,Melquiond A.S.J.ORCID,Xue L.C.ORCID,Honorato R.V.ORCID,Moreira I.ORCID,Kurkcuoglu Z.ORCID,Vangone A.ORCID,Bonvin A.M.J.J.ORCID

Abstract

ABSTRACTOur information-driven docking approach HADDOCK has demonstrated a sustained performance since the start of its participation to CAPRI. This is due, in part, to its ability to integrate data into the modelling process, and to the robustness of its scoring function. We participated in CAPRI both as server and as manual predictors.In CAPRI rounds 38-45, we have used various strategies depending on the information at hand. These ranged from imposing restraints to a few residues identified from literature as being important for the interaction, to binding pockets identified from homologous complexes or template-based refinement / CA-CA restraint-guided docking from identified templates. When relevant, symmetry restraints were used to limit the conformational sampling. We also tested for a large decamer target a new implementation of the MARTINI coarse-grained force field in HADDOCK. Overall in the current rounds, we obtained acceptable or better predictions for 13 and 11 server and manual submissions, respectively, out of the 22 interfaces. Our server performance (acceptable models) was better (59%) than the manual (50%) one, in which we typically experiment with various combinations of protocols and data sources. Again, our simple scoring function based on a linear combination of intermolecular van der Waals and electrostatic energies and an empirical desolvation term demonstrated a good performance in the scoring experiment with a 63% success rate across all 22 interfaces.An analysis of model quality indicates that, while we are consistently performing well in generating acceptable models, there is room for improvement for generating/identifying higher quality models.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3