Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis

Author:

Takeda Norihiko,O'Dea Ellen L.,Doedens Andrew,Kim Jung-whan,Weidemann Alexander,Stockmann Christian,Asagiri Masataka,Simon M. Celeste,Hoffmann Alexander,Johnson Randall S.

Abstract

Hypoxic response and inflammation both involve the action of the hypoxia-inducible transcription factors HIF-1α and HIF-2α. Previous studies have revealed that both HIF-α proteins are in a number of aspects similarly regulated post-translationally. However, the functional interrelationship of these two isoforms remains largely unclear. The polarization of macrophages controls functionally divergent processes; one of these is nitric oxide (NO) production, which in turn is controlled in part by HIF factors. We show here that the HIF-α isoforms can be differentially activated: HIF-1α is induced by Th1 cytokines in M1 macrophage polarization, whereas HIF-2α is induced by Th2 cytokines during an M2 response. This differential response was most evident in polarized macrophages through HIF-α isoform-specific regulation of the inducible NO synthase gene by HIF-1α, and the arginase1 gene by HIF-2α. In silico modeling predicted that regulation of overall NO availability is due to differential regulation of HIF-1α versus HIF-2α, acting to, respectively, either increase or suppress NO synthesis. An in vivo model of endotoxin challenge confirmed this; thus, these studies reveal that the two homologous transcription factors, HIF-1α and HIF-2α, can have physiologically antagonistic functions, but that their antiphase regulation allows them to coordinately regulate NO production in a cytokine-induced and transcription-dependent fashion.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference61 articles.

1. Temporal expression of different pathways of 1-arginine metabolism in healing wounds;Albina;J Immunol,1990

2. Arginine availability, arginase, and the immune response

3. Macrophage Polarization in Bacterial Infections

4. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-γ, is associated with macrophage killing of Mycobacterium avium complex;Bermudez;J Immunol,1988

5. HIF2  inhibition promotes p53 pathway activity, tumor cell death, and radiation responses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3