Identification of novel key biomarkers in Simpson-Golabi-Behmel Syndrome: Evidence from bioinformatics analysis

Author:

Mustafa Mujahed I.ORCID,Abdelmoneim Abdelrahman H.ORCID,Elfadol Nafisa M.,Murshed Naseem S.,Mohammed Zainab O.,Hassan Mohamed A.

Abstract

AbstractBackgroundThe Simpson-Golabi-Behmel Syndrome (SGBS) or overgrowth Syndrome is a rare inherited X-linked condition characterized by pre- and postnatal overgrowth. The aim of the present study is to identify functional non-synonymous SNPs of GPC3 gene using various in silico approaches. These SNPs are supposed to have a direct effect on protein stability through conformation changes.Material and methodsThe SNPs were retrieved from the Single Nucleotide Polymorphism database (dbSNP) and further used to investigate a damaging effect using SIFT, PolyPhen, PROVEAN, SNAP2, SNPs&GO, PHD-SNP and P-mut, While we used I-mutant and MUPro to study the effect of SNPs on GPC3 protein structure. The 3D structure of human GPC3 protein is not available in the Protein Data Bank, so we used RaptorX to generate a 3D structural model for wild-type GPC3 to visualize the amino acids changes by UCSF Chimera. For biophysical validation we used project HOPE. Lastly we run conservational analysis by BioEdit and Consurf web server respectively.Resultsour results revealed three novel missense mutations (rs1460413167, rs1295603457 and rs757475450) that are found to be the most deleterious which effect on the GPC3 structure and function.ConclusionThis present study could provide a novel insight into the molecular basis of overgrowth Syndrome.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3