A Missense Point Mutation in Nerve Growth Factor (NGFR100W) Results in Selective Peripheral Sensory Neuropathy

Author:

Yang Wanlin,Sung Kijung,Xu Wei,Rodriguez Maria J,Wu Andrew C.,Santos Sarai A.,Fang Savannah,Uber Rebecca K.,Dong Stephanie X.,Guillory Brandon C.,Orain Xavier,Raus Jordan,Jolivalt Corrine,Calcutt Nigel,Rissman Robert A.,Ding Jianqing,Wu ChengbiaoORCID

Abstract

ABSTRACTA missense point mutation in nerve growth factor (NGFR100W) is associated with hereditary sensory autonomic neuropathy V (HSAN V), originally discovered in a Swedish family. These patients develop severe loss of perception to deep pain but with apparently normal cognitive functions. To better understand the disease mechanism, we have generated the first NGFR100Wknockin mouse model of HSAN V. Mice homozygous for the NGFR100Wmutation (NGFfln/fln) showed significant structural deficits in intra-epidermal nerve fibers (IENFs) at birth. These mice had a total loss of pain perception at ∼2 months of age and they often failed to survive to full adulthood. Heterozygous mice (NGF+/fln) developed a progressive degeneration of small sensory fibers both behaviorally and functionally: they showed a progressive loss of IENFs starting at the age of 9 months accompanied with progressive loss of perception to painful stimuli such as noxious temperature. Quantitative analysis of lumbar 4/5 dorsal root ganglia (DRG) revealed a significant reduction in small size neurons positive for calcitonin gene-related peptide, while analysis of sciatic nerve fibers revealed the mutant NGF+/flnmice had no reduction in myelinated nerve fibers. Significantly, the amount of NGF secreted from fibroblasts were reduced in heterozygous and homozygous mice compared to their wild-type littermates. Interestingly, NGF+/flnshowed no apparent structural alteration in the brain: neither the anterior cingulate cortex nor the medial septum including NGF-dependent basal forebrain cholinergic neurons. Accordingly, these animals did not develop appreciable deficits in tests for central nervous system function. Our study provides novel insights into the selective impact of NGFR100Wmutation on the development and function of the peripheral sensory system.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3