Abstract
AbstractThe plant Golgi apparatus modifies and sorts incoming proteins from the endoplasmic reticulum (ER), and synthesises cell wall matrix material. Plant cells possess numerous motile Golgi bodies, which are connected to the ER by yet to be identified tethering factors. Previous studies indicated a role of cis-Golgi plant golgins (long coiled-coil domains proteins anchored to Golgi membranes) in Golgi biogenesis. Here we show a tethering role for the golgin AtCASP at the ER-Golgi interface. Using live-cell imaging, Golgi body dynamics were compared in Arabidopsis thaliana leaf epidermal cells expressing fluorescently tagged AtCASP, a truncated AtCASP-ΔCC lacking the coiled-coil domains, and the Golgi marker STtmd. Golgi body speed and displacement were significantly reduced in AtCASP-ΔCC lines. Using a dual-colour optical trapping system and a TIRF-tweezer system, individual Golgi bodies were captured in planta. Golgi bodies in AtCASP-ΔCC lines were easier to trap, and the ER-Golgi connection was more easily disrupted. Occasionally, the ER tubule followed a trapped Golgi body with a gap, indicating the presence of other tethering factors. Our work confirms that the intimate ER-Golgi association can be disrupted or weakened by expression of truncated AtCASP-ΔCC, and suggests that this connection is most likely maintained by a golgin-mediated tethering complex.HighlightHere we show that the Golgi-associated Arabidopsis thaliana protein AtCASP may form part of a golgin-mediated tethering complex involved in anchoring plant Golgi stacks to the endoplasmic reticulum (ER).
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献