Abstract
ABSTRACTA central theme in biology is to understand the molecular basis of fitness: which strategies succeed under which conditions; how are they mechanistically implemented; and which constraints shape trade-offs between alternative strategies. We approached these questions with parallel bacterial evolution experiments in chemostats. Chemostats provide a constant environment with a defined resource limitation (glucose), in which the growth rate can be controlled. UsingLactococcus lactis, we found a single mutation in a global regulator of carbon metabolism, CcpA, to confer predictable fitness improvements across multiple growth rates.In silicoprotein structural analysis complemented with biochemical and phenotypic assays, show that the mutation reprograms the CcpA regulon, specifically targeting transporters. This supports that membrane occupancy, rather than biosynthetic capacity, is the dominant constraint for the observed fitness enhancement. It also demonstrates that cells can modulate a pleiotropic regulator to work around limiting constraints.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献